Positional Information Generated by Spatially Distributed Signaling Cascades
نویسندگان
چکیده
The temporal and stationary behavior of protein modification cascades has been extensively studied, yet little is known about the spatial aspects of signal propagation. We have previously shown that the spatial separation of opposing enzymes, such as a kinase and a phosphatase, creates signaling activity gradients. Here we show under what conditions signals stall in the space or robustly propagate through spatially distributed signaling cascades. Robust signal propagation results in activity gradients with long plateaus, which abruptly decay at successive spatial locations. We derive an approximate analytical solution that relates the maximal amplitude and propagation length of each activation profile with the cascade level, protein diffusivity, and the ratio of the opposing enzyme activities. The control of the spatial signal propagation appears to be very different from the control of transient temporal responses for spatially homogenous cascades. For spatially distributed cascades where activating and deactivating enzymes operate far from saturation, the ratio of the opposing enzyme activities is shown to be a key parameter controlling signal propagation. The signaling gradients characteristic for robust signal propagation exemplify a pattern formation mechanism that generates precise spatial guidance for multiple cellular processes and conveys information about the cell size to the nucleus.
منابع مشابه
Spatially distributed cell signalling.
Emerging evidence indicates that complex spatial gradients and (micro)domains of signalling activities arise from distinct cellular localization of opposing enzymes, such as a kinase and phosphatase, in signal transduction cascades. Often, an interacting, active form of a target protein has a lower diffusivity than an inactive form, and this leads to spatial gradients of the protein abundance i...
متن کاملRegulation of Signal Duration and the Statistical Dynamics of Kinase Activation by Scaffold Proteins
Scaffolding proteins that direct the assembly of multiple kinases into a spatially localized signaling complex are often essential for the maintenance of an appropriate biological response. Although scaffolds are widely believed to have dramatic effects on the dynamics of signal propagation, the mechanisms that underlie these consequences are not well understood. Here, Monte Carlo simulations o...
متن کاملA Molecular Smart Surface for Spatio-Temporal Studies of Cell Mobility
Active migration in both healthy and malignant cells requires the integration of information derived from soluble signaling molecules with positional information gained from interactions with the extracellular matrix and with other cells. How a cell responds and moves involves complex signaling cascades that guide the directional functions of the cytoskeleton as well as the synthesis and releas...
متن کاملIt's all about change: the antigen-driven initiation of B-cell receptor signaling.
B-cell responses are initiated by the binding of foreign antigens to the clonally distributed B-cell receptors (BCRs) resulting in the triggering of signaling cascades that activate a variety of genes associated with B-cell activation. Although we now understand the molecular nature of the signaling pathways in considerable detail what remains only poorly understood are the mechanisms by which ...
متن کاملSignaling gradients in cascades of two-state reaction-diffusion systems.
Biological networks frequently use cascades, generally defined as chain-like arrangements of similar modules. Spatially lumped cascades can serve as noise filters, time-delay, or thresholding elements. The operation and functional capabilities of spatially distributed cascades are much less understood. Motivated by studies of pattern formation in the early Drosophila embryo, we analyze cascades...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Computational Biology
دوره 5 شماره
صفحات -
تاریخ انتشار 2009